Fundamental Theorem of Line Integrals

- 1. (a) Show that $\mathbf{F}(x, y) = x^2 \mathbf{i} + (y^2 + 3)\mathbf{j}$ is conservative.
 - (b) For **F** as above, find a function f(x, y) such that $\Delta f = \mathbf{F}$.
- 2. Use the fundamental theorem of line integrals to find $\int_C \mathbf{F} \cdot dr$, where C is the path

 $(\cos 2t - 1, \sin 2t, \sin t)$

from (0, 0, 0) to (-2, 0, 1), and $\mathbf{F} = \Delta(e^{xyz} + 3)$.